


Table 1. Calculated values of the Bardeen–Hering correlation factor f [10] for four two-dimensional and four three-dimensional
structures. Z is the coordination number of the graph.

structure Z 2kcos ulAv f

linear chain 2 1 0
honeycomb layer 3 1/2 1/3
square layer 4 1 2 2/p 0.466942
triangle layer 6 5/6 2

p
3/p 0.566057

diamond 4 1/3 1/2
simple cubic 6 0.209841 0.653120
body-centred cubic 8 1 2 G4(1

4)8p
3 2 8p/G4(1

4) 0.727194
face-centred cubic 12 0.123. . . 0.781. . .

Figure 1. Large interstitial sites (red) in the diamond crystal structure (green) (stereo image).
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would expect that small foreign atoms in dilute sol-
ution in silicon or germanium would occupy the
comparatively large interstitial spaces (cf. figure 1)
and diffuse by strictly random walk, as they hop
from one interstitial site to another. Because the direc-
tions of consecutive steps of an atom in such a case are
uncorrelated, f ¼ 1. These expectations were con-
firmed: in self-diffusion isotope effect experiments in
single crystals of palladium, Peterson obtained results
consistent with those of the vacancy mechanism [10],
while measurements of the isotope effect for lithium
diffusion in silicon by Pell [11] implied diffusion by
random walk, which is consistent only with interstitial
diffusion.

The computational techniques used before 1960 to
calculate correlation factors yielded only approximate
values. Even though these were accurate enough for
comparison with experiment, I decided to derive exact
values, using a direct combinatorial approach. In 1960,
with the help of a key clue suggested to me by the
theoretical physicist J. Kanamori (1960, personal com-
munication), R. W. Lowen Jr and I obtained solutions
for f expressed as elliptic integrals [12], yielding exact
values for six two- and three-dimensional structures, plus
a six-figure numerical value for the simple cubic (sc) lattice.
Our results are summarized in table 1. I do not recall
whether we succeeded in obtaining analytic expressions
for the face-centred cubic ( fcc) lattice. The approximate
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fcc value listed there, which Bob Lowen and I were able
to confirm, was computed by Hering [9].

The smaller the value of f, the easier it is to obtain
accurate experimental values of the isotope effect. The
entries in table 1 suggested to me that for self-diffusion
by the vacancy mechanism in a monatomic cubic crystal
with Z ¼ 3, f would probably be less than 0.5. (The data
in the table are consistent with the approximation
kcos ulAv ffi �1=ðZ � 1Þ; for both two- and three-dimen-
sional structures.) Although I was fascinated in 1958 by
Wells’ stereoscopic images [13] of an intertwined pair of
enantiomorphic Laves graphs [14–17], for each of which
Z ¼ 3, I was disappointed to learn that Wells considered
it highly unlikely that there exists a monatomic crystal in
which the atomic positions correspond to the vertices of
just one Laves graph [18]. In 1960, I constructed a
model of an intertwined pair of Laves graphs, and six
years later it became my guide when I conjectured the
existence of a TPMS—the gyroid—that separates the
two graphs (figure 2).

While pondering the classical concepts of dual maps
and reciprocal polyhedra described by Coxeter [19,20], I
attempted to develop a systematic general procedure for
constructing a kind of dual relation for pairs of triply-
periodic graphs whose edges coincide with hypothetical
diffusion pathways—one graph for self-diffusion and the
other for interstitial diffusion. I wondered what restric-
tions would be required on the properties of a graph in
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Figure 2. Two dual enanatiomorphic Laves graphs.

(a)

(b)

Figure 3. (a; stereo image) The dual graphs bcc (blue vertices and
edges) and WP (orange vertices and edges); (b; stereo image)
Tetragonal tetrahedron, interstitial polyhedron of the bcc graph.
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order for such a dual recipe to be effective. For example,
would the graph have to be symmetric—i.e. both edge-
transitive and vertex-transitive? I searched for crystals
of cubic symmetry in which there is only one kind of inter-
stitial site of atomic proportions, because I assumed that
interstitial diffusion would approximate random walk
most closely in such crystals.

In the spring of 1966, at the suggestion of Konrad
Wachsmann [21], architecture chairman at the University
of Southern California, I paid a call on Peter Pearce
[22,23], a Los Angeles architect/designer who was study-
ing polyhedral packings and triply-periodic networks
(graphs). Peter’s studio was filled with ball-and-stick
models of crystal structures, two of which I found
especially intriguing. One of them modelled the diamond
crystal structure and the other the body-centred cubic lat-
tice. I will call these two the diamond graph and the bcc
graph. A single interstitial cavity in each of them was
occupied by what Peter called a saddle polyhedron—an
object whose faces are skew polygons congruent to the
smallest edge circuit in the graph (cf. figures 3b and 4b).
Peter had been inspired by a museum exhibit, designed
by his former mentor Charles Eames [24] and the mathe-
matician Ray Redheffer [25], in which a regular skew
quadrangular boundary frame was periodically immersed
in a beaker of soapy water, spanning a minimal surface
each time it emerged from the beaker.

When I saw Peter’s two saddle polyhedra, I recog-
nized immediately that at least for the graphs sc, bcc,
Laves and diamond—and probably also for other
graphs—it was true that:

— a point at the centre of the saddle polyhedron P1

that is interstitial with respect to the graph G1 is a
vertex of a second graph G2, and

— a point at the centre of the saddle polyhedron P2

that is interstitial with respect to the graph G2 is a
vertex of the original graph G1.

The edges of G1 protrude through the faces of P2, and
the edges of G2 protrude through the faces of P1. I con-
cluded that saddle polyhedra might serve as the basis
for a three-dimensional dual relation analogous to the
conventional duality of planar graphs. I called G1 a
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nodal graph and G2 an interstitial graph, but a saddle
polyhedron that is interstitial in one of the graphs is
nodal in its dual and vice versa. Figures 3a,b and 4a,b
illustrate this duality for the bcc and I-WP graphs. A
few graphs, such as sc, diamond and Laves, are self-
dual, but the graphs of most dual pairs, such as the bcc
graph (cf. figure 3a) and the WP graph (cf. figure 4a),
are dissimilar. Two dual Laves graphs are enantio-
morphic because the Laves graph is chiral. The nodal
polyhedron for the Laves graph is shown in figure 5.

During the weeks following my first meeting with
Peter Pearce, I tested my dual recipe on a variety of
other graphs, not only symmetric ones, obtaining unam-
biguous results in every case. In some cases, the saddle
polyhedra ‘degenerated’ into convex polyhedra. In the
6-valent sc graph and the 12-valent fcc graph, for
example, both the interstitial and nodal polyhedra pro-
duced by the recipe are the Voronoi polyhedra of the
vertices of their respective graphs. For the fcc graph,
there are two shapes of interstitial polyhedra—the
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Figure 4. (a; stereo image) WP graph; (b; stereo image)
Expanded octahedron, interstitial polyhedron of the WP graph.

Figure 5. nodal polyhedron of the Laves graph. Its mirror image
is the interstitial polyhedron of the graph (stereo image).
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regular octahedron and the regular tetrahedron. The
dual graph in this case is not ‘k-regular’, because it has
both degree 4 and degree 8 vertices. Nevertheless, the
nodal polyhedron produced by the recipe for fcc is the
rhombic dodecahedron, as one might expect. In spite of
all these favourable indications, I recognized that the
recipe, which is described in [6], is essentially an ad hoc
heuristic. Expecting it to fail eventually, I remained on
the lookout for the ‘failure’ case.

In recent years, several authors [26,27] have applied
Delaney–Dress tiling theory to formalize the concept
of saddle polyhedra, treating a greatly expanded set of
graphs, with results equivalent to those sketched here.
The treatment of the subject has become simplified, in
part because these authors have devised improved
conventions for naming both graphs and saddle polyhedra.

Peter Pearce fabricated each face of his saddle poly-
hedra by pushing a metal tool in the shape of the face
boundary into a heated sheet of transparent vinyl,
stretching it into an approximation of a minimal sur-
face. I constructed my own plastic models of a variety
of saddle polyhedra, using my children’s toy vacuum-
forming machine and tools made in my tiny garage
shop. I made each mould for vacuum-forming face poly-
gons as a solid cast of polyester resin, first stretching a
rubber membrane across the boundary of the face tool
and then pouring resin onto the membrane and allow-
ing it to harden.

My first encounter with TPMS occurred soon after I
met Peter Pearce. While I was thinking about how to
name saddle polyhedra, I was startled to discover two
spectacular surfaces (cf. figure 6a,c) I had never seen
before. Let me call the regular skew hexagonal face of
the expanded octahedron shown in figure 4b Fp/2

because it has 908 face angles. Adjacent faces of this
saddle polyhedron are related by mirror reflection in
the plane that contain a shared pair of consecutive
edges. But if adjacent faces are related instead by a
half-turn about a common edge, their union defines a
Interface Focus
smooth surface spanned by a 10-sided skew polygon.
No matter how many additional replicas of Fp/2 are
attached in this fashion, the emerging triply-periodic
labyrinthine surface remains free of self-intersections.
Applying the same procedure to the regular skew hexa-
gon Fp/3, which has 608 face angles, yields a second
triply-periodic surface. I named the Fp/2 surface D
and the Fp/3 surface P. The lattice for D is fcc and
the lattice for P is sc. Eight Fp/2 hexagons define a lat-
tice fundamental domain for D and four Fp/3 hexagons
define one for P.

In June 1966, I telephoned the minimal surface
expert Hans Nitsche for information about the surfaces
I was calling D and P. I described them as optimally
smoothed versions of the three infinite regular skew
polyhedra Coxeter and Petrie discovered as schoolboys
in the 1920s [28]. Hans informed me that D and P are
the two adjoint minimal surfaces investigated in 1866
by Schwarz [4], who proved that they are described by
conjugate harmonic functions in Weierstrass integrals.
He explained that the smoothness at the junction
between their hexagonal or quadrangular faces is a con-
sequence of Schwarz’s reflection principle [4,29]. A few
weeks later, Norman Johnson [30] visited me at my
home, where we discussed the Coxeter maps f6,4j4g,
f4,6j4g and f6,6j3g [24] and their relevance to these sur-
faces. The symbol f6,4j4g, for example, describes a
tiling by regular six-gons, with four incident on each
vertex, and ‘holes’ that are regular four-gons. Now I
began to study Schwarz [4], Eisenhart [31], Hilbert &
Cohn-Vossen [32] and a few other authors.

While I was learning more about the mathematics of
minimal surfaces, I conducted a variety of wire-frame
experiments with soap films, starting with the catenoid
and the helicoid. I was mildly curious about the shape
of the curve around the waist of the ‘square catenoid’
(cf. figure 7). It was clear from soap film experiments
with two square rings at different separation distances
that this curve is not a circle (cf. the circular waist of
the true catenoid), but to prove that it is not, it is
necessary to invoke Björling’s theorem [33]: if two mini-
mal surfaces contain a curve C at all corresponding
points of which the surface tangent planes are the
same, then the surfaces are the same. Early in 1968,
my colleague Jim Wixson and I computed the shape
of this square catenoid waist curve, using Schwarz’s
equations for the P surface [4]. As I anticipated, it
bulges slightly outward in the neighbourhood of
the four points closest to the corners of the squares.
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Figure 6. The Coxeter-Petrie f6,4j4gmap [28] on the surfaces (a) D, (b) G and (c) P.

Figure 7. The linear asymptotics and plane geodesics in the
‘square catenoid’ of Schwarz’s P surface (stereo image).
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(In September 1968, I made use of Schwarz’s analytic
expression for the length of this curve to derive the
Bonnet angle [4] of the gyroid.)

In the summer of 1966, I began calling the inter-
twined pair of labyrinth graphs in a TPMS ‘skeletal
graphs’. I believed that there must exist other examples
of TPMS besides Schwarz’s D, P, H and CLP sur-
faces [4], but I did not undertake a very systematic
search. In July, I began to suspect that there exists a
TPMS I named L (for Laves), with two intertwined
labyrinths that are essentially swollen versions of
enantiomorphic Laves graphs [14–17]. I later changed
its name to gyroid, or G, which is what I will call it
here. I believed in the existence of G partly because
its skeletal graphs—like the sc and diamond skeletal
graphs of P and D—would be symmetric, i.e. both
vertex-transitive and edge-transitive. Even now I
know of no other examples of dual pairs of symmetric
graphs on a cubic lattice. The genus of G would be
three, as it is for D and P, and the space lattice of G
would be bcc, implying that there is a TPMS of genus
three for each of the three cubic lattices (the space
lattices of D and P are fcc and sc, respectively).

Schwarz demonstrated how to derive the Weierstrass
integrals that define the coordinates of sufficiently
simple symmetrical minimal surfaces bounded by
either straight lines or plane geodesics (or both) [4].
Because it was impossible for G to contain either
straight lines or plane geodesics, I had no idea how to
construct it. It didn’t occur to me that the key to the
gyroid problem was Ossian Bonnet’s associate surface
transformation. Bonnet proved in 1853 [34] that every
simply-connected minimal surface S can be bent in
such a way that (a) the orientation of the tangent
plane at every point is unchanged, (b) the Gaussian
curvature at every point is unchanged, and (c) the
mean curvature at every point remains zero.
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D and P are examples of adjoint minimal surfaces.
Plane geodesics in one surface of an adjoint pair S1

and S2 correspond to straight lines, orthogonal to
that plane, in the other surface. If a point O
common to S1 and S2 is fixed, and r1 and r2 are corre-
sponding points of S1 and S2, then r*(u), the image of
r1 and r2 under bending, is given by r*(u) ¼ r1 cos u þ
r2 sin u. Hence the points r1, r2, and r*(u) lie on an
ellipse centered at O. For S1 and S2, u ¼ 0 and p/2,
respectively. Every surface produced by Bonnet bend-
ing is called associate to S1 and S2 and is
parameterized by the Bonnet angle u. If S1 ¼ D,
S2 ¼ P, and the Bonnet angle uG ¼ cot21 (K0[1/2]/
K[1/2])ffi38.0147748, the resulting intersection-free
associate surface has all of the properties I had antici-
pated for G. Figure 8 shows ellipses through sets of
corresponding points on D, P, and G. These ellipses
have the same eccentricity.

In May, 1968, I made an incomplete survey of the
regular and uniform tilings on D, G, and P by
straight-edged skew polygons. (In unpublished work,
Norman Johnson later filled in the gaps in my inven-
tory.) Because I was beginning to receive not-so-subtle
pressure from NASA headquarters to do something
‘useful’, I decided to apply my analysis of these tilings
to the design of expandable spaceframes, including
one based on the Laves graph. I spent the next two
months developing these designs, writing NASA
patent applications, and—with the assistance of
Charles Strauss and Bob Davis—making computer-
animated movies of what I called the ‘collapse trans-
formation’ for several examples of triply-periodic
graphs, including the Laves graph [6].

Let us consider the kinematics of the collapse trans-
formation applied to the infinite Laves graph. At first
we regard the graph as embedded in Schwarz’s D sur-
face, with adjacent vertices of the graph at the centres
of adjacent skew hexagonal faces of D, as in
figure 9a. The initial directions of the vertex displace-
ments are along perpendiculars to D, adjacent vertices
moving oppositely with respect to the two sides of D.
But it is convenient instead to describe all of the
vertex trajectories relative to the position of a single
fixed vertex at the origin O. Now the initial directions
of the vertex displacements are as shown in figure 9b.
The trajectory of every vertex V is an ellipse centred at
the origin. The three vertices nearest the origin—
a,b, and c in figure 10—rotate on circular arcs in orthog-
onal coordinate planes. Figure 11 shows the circular
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Figure 8. (stereo image) Ellipses, all of the same eccentricity, through corresponding points on D, G and P. There is a fixed point
O at the centre of the hexagonal patches.
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Figure 9. (a; stereo image) Directions of initial displacements of vertices of the Laves graph embedded in Schwarz’s D surface.
(b; stereo image) Directions of initial displacements of vertices of the Laves graph embedded in Schwarz’s D surface, with one
vertex (yellow) fixed at the origin.
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trajectories of vertices a, b, and c of figure 10 as well as the
elliptical trajectories of three vertices shown in figure 9
that are farther from the origin than a, b and c are.

Every vertex in the graph belongs to one of four
classes—1, 2, 3, or 4—according to whether it is related
by a translational symmetry of the graph to the vertex
a, b, c, or O. In figure 10, the points A, B, C, and O,
with coordinates rA, rB, rC, and (0,0,0), respectively,
lie at the corners of the regular tetrahedron ABCO.
Every vertex of the graph is mapped onto one of
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the four vertices of ABCO. If a vertex is in class 1,
with initial position r1, its collapse trajectory is r ¼
r1 cos u þ rA sin u. The collapse trajectories of vertices
in class 2 and 3, with initial positions r2 and r3, are
r ¼ r2 cos u þ rB sin u and r ¼ r3 cos u þ rC sin u, respect-
ively. The trajectory of a vertex in class 4, with initial
position r4, is along the line through O, r ¼ r4 cos u.

For a vertex V with initial position (x,y,z), the major
radius of its trajectory ellipse is equal to j(x,y,z)j. If V is
in class 1, 2, or 3, the minor radius of the ellipse is equal










