Contents

Theme issue: Multiscale modelling in biomechanics: theoretical, computational and translational challenges

INTRODUCTION

Multiscale modelling in biomechanics
M Viceconti, JD Humphrey, A Erdemir and M Tawhai

ARTICLES

Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales
WL Murfee, RS Sweat, K Tsubota, FM Gabhann, D Khismatullin and SM Peirce

A multiscale model for the study of cardiac biomechanics in single-ventricle surgeries: a clinical case
A Meoli, E Cutrı`, A Krishnamurthy, G Dubini, F Migliavacca, T-Y Hsia and G Pennati and the Modeling of Congenital Hearts Alliance (MOCHA) Investigators

Multiscale modelling of the feto–placental vasculature
AR Clark, M Lin, M Tawhai, R Saghian and JL James

Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility
KM Virgilio, KS Martin, SM Peirce and SS Blemker

Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow
A Erdemir, C Bennetts, S Davis, A Reddy and S Sibole

The inter-sample structural variability of regular tissue-engineered scaffolds significantly affects the micromechanical local cell environment
AC Marin and D Lacroix

Coupling intercellular molecular signalling with multicellular deformation for simulating three-dimensional tissue morphogenesis
S Okuda, Y Inoue, T Watanabe and T Adachi

Stochastic modelling of muscle recruitment during activity
S Martelli, D Calvetti, E Somersalo and M Viceconti

Comparison of generic and subject-specific models for simulation of pulmonary perfusion and forced expiration
KL Hedges, AR Clark and MH Tawhai

Predicting electromyographic signals under realistic conditions using a multiscale chemo–electro–mechanical finite element model
M Mordhorst, T Heidlauf and O Rührle