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The application of mathematical models in biology and medicine has a long history. From the
sparse number of papers in the first half of the twentieth century with a few scientists working
in the field it has become vast with thousands of active researchers. We give a brief, and far
from definitive history, of how some parts of the field have developed and how the type of
research has changed. We describe in more detail just two examples of specific models
which are directly related to real biological problems, namely animal coat patterns and the
growth and image enhancement of glioblastoma brain tumours.
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1. INTRODUCTION

A few individuals in the distant past proposed math-
ematical models for a variety of biological and medical
problems. One of the first, by Leonardo of Pisa
(1202), was not very serious; it was an exercise in his
arithmetic book, Liber abbaci. The problem is to start
with a male and female pair of immature rabbits at
the beginning of a breeding season. After one season
they can reproduce and produce two pairs of immature
rabbits. The parents then stop producing but after
another season the immature rabbits produce two
pairs each and then stop. The process continues exactly
in the same way. The question is to determine the
number of pairs of rabbits at each reproductive
period. The answer is 1 1 2 3 5 8 13 . . . : each number
is the sum of the previous two. This well-known series
is now known as the Fibonacci series: Leonardo of
Pisa was renamed Fibonacci in the seventeenth century.
This series arises in an astonishingly wide range of situ-
ations. For example, if you count the number of spirals
on a pine cone, or on a sunflower head, the number will
be a Fibonacci number. It, and others where the
Fibonacci series is observed, is still a mystery as to why.

With the limit restriction on articles in this Theme
Issue, it is possible to describe briefly only a very few of
the numerous early contributions to the development
of this field. Possibly the first serious examples of a math-
ematical model for a medical problem was by Bernoulli
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[1]. He suggested a model (a differential equation
model) to quantify the effect of cow-pox inoculation on
the spread of smallpox. This article gives some interest-
ing data on child mortality and it is used to assess the
practical advantages of a vaccination control pro-
gramme. The concept of acquiring immunity by
contact with a disease is much older. There is an ancient
Chinese custom where children were made to inhale the
powder made from the crusts of skin lesions of people
recovering from smallpox. Had Bernoulli’s paper been
published in the first half of the twentieth century it
would have been considered one of the great classics of
the field on par with, for example, that of Lotka [2]
and Volterra [3] on modelling a two-population preda-
tor–prey interaction, Fisher [4] on the genetics of
natural selection, Kermack & McKendrick’s [5] article
on modelling epidemics, and Fisher [6] and Kolmogoroff
et al. [7] who brought diffusion into their mathematical
models of certain biological phenomena.

D’Arcy Thompson’s monumental book On Growth
and Form, first published in 1917 [8], is not specifically
on mathematical modelling as such but mathemati-
cal concepts associated with morphological patterns
played a major role. There had been considerable inter-
est in it for a long time. The classic work of Saint-Hilaire
[9] is a remarkable seminal example. Sainte-Hilaire was
particularly interested in teratology and was probably
the first to introduce the important concept of a devel-
opmental constraint to which we will come back in
our further discussion. D’Arcy Thompson specifically
commented on the absence of particular forms, which
implies an awareness of developmental constraints. He
emphasized the parallels between the study of form in
This journal is q 2012 The Royal Society
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physical systems and that of biological form, which pre-
saged later papers in the field. Turing’s [10] paper on
the chemical basis of morphogenesis has only six
references, one of which is to the second edition of
D’Arcy Thompson’s book (1942).
2. EARLY GROWTH OF MATHEMATICAL
BIOLOGY

Although not specifically referred to as a separate disci-
pline, research on the application of mathematical
modelling in the biomedical sciences had been carried
out by a small number of scientists. Recognition of its
importance grew slowly in the 1950s with, for example,
the classic Nobel Prize work on nerve conduction
and excitation of Hodgkin & Huxley [11]. Turing’s [10]
foray into biology is primarily practical but essentially
mathematical: he says nothing about real biology or
morphogenesis. Importantly, however, he showed how a
model system of reacting and diffusing chemicals in a
bounded domain can result in steady-state spatial pat-
terning of the chemical concentrations. We shall come
back to this below when we discuss some applications of
pattern formation models.

The late 1960s and to a greater extent the 1970s saw a
major increase of interest in the field, including reaction–
diffusion systems, primarily studied theoretically, such as
the work by Prigogine & Nicolis [12], who reintroduced
Turing’s [10] paper, essentially ignored until then. They
proposed a simpler (mathematically) model system.
Another influential activator–inhibitor reaction–diffu-
sion system was proposed by Gierer & Meinhardt [13]
also based on Turing’s chemical patterning concept.

Other than the above, research directly associated with
the experiment was rarer. Murray [14] introduced a model
for enzyme kinetics based on oxygen diffusion into pea
nodules. The importance of myoglobin and haemoglobin
in facilitating oxygen in a variety of physiological situ-
ations was modelled and related to the experiment by
Murray [15,16] and Murray & Wyman [17]. The practical
work of Winfree [18–21] on biological clocks had a major
influence on the field. Among his many original results
there is a practical method for resetting one’s biological
clock after long flights across several time zones. A brief
survey of just some of the early work in this interdisci-
plinary field, now known as mathematical biology or
theoretical biology, and lately systems biology, and its
remarkable growth since the early 1970s is included in
the book by Murray [22]. Research on theoretical
models in ecology and epidemiology had also been grow-
ing from the 1950s: see the major review article by Levin
[23,24], who specifically focuses on pattern and scale in
ecology. In the mathematical modelling here, the ‘reac-
tion’ terms model population growth and interaction or,
in epidemiology, disease virulence and spread: see, for
example, Grenfell et al. [25].

With the ever increasing number of people getting
involved in the field the number of genuinely practical
examples has grown, as has the number of essentially
mathematics papers where the primary interest is in
mathematics with scant connection to any real biology.
By the mid-1980s it was becoming more widely
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recognized that any real contribution to the biological
sciences from modelling must genuinely be interdisciplin-
ary and hence related to real biology. The best research
was that which proposed models for specific biological
situations and with which its predictions were confirmed,
or otherwise, by experiment and, importantly, help our
understanding of the real biological problems. It is poss-
ible to mention only a very few of the now numerous
successful interdisciplinary collaborations. There are
however, many books of author-contributed chapters
and of various meeting proceedings which give a good pic-
ture of how the field developed, for example those by
Brenner et al. [26], Jäger & Murray [27], Levin [28],
Chaplain et al. [29] and Maini & Othmer [30]. One rela-
tively recent and important growth area is in physiology,
the definitive text of which is by Keener & Sneyd [31].
3. MODELLING BIOLOGICAL PATTERN
AND FORM

In spite of the enormous amount of research and the
exploding growth of genetics, the development of spatial
pattern and form is still one of the central issues in embry-
ology. In the past 20–30 years, it has spawned exciting,
important and genuine interdisciplinary research bet-
ween theoreticians and experimentalists, the common
aim of which is the elucidation of the underlying mechan-
isms involved in embryology and medicine; most of these
mechanisms are essentially still unknown.

By way of illustration, we shall describe some specific
biological problems and their modelling. We shall point
out some of the limitations of Turing-type reaction–
diffusion mechanisms which necessitated a new, and
more experimentally verifiable, approach to biological
pattern formation, known as the mechanical theory of
biological pattern formation proposed by Oster et al.
[32], Murray et al. [33] and Murray & Oster [34].
A large body of research has been developed on
tumour growth, such as brain tumours (see [36] for a
survey): it is now being used medically to quantify the
efficacy of individual patient treatment scenarios prior
to their use.

The first genuine experimentally based reaction–
diffusion system which produced steady-state chemical
spatial patterns in line with Turing’s predictions was
developed by Thomas [37]. Interestingly, when you
take all of these model systems and look at the par-
ameter ranges which can generate spatial patterns
[38], by far the largest ranges are those of the practical
system proposed by Thomas [37]. There are numerous
review articles and books—for example, Murray’s
Mathematical Biology [35,36,39]—which describe,
among many other topics, Turing’s theory of morpho-
genesis and its influence on modelling biological
pattern and form in detail and, more specifically,
Turing’s theory in a review article [40]. Maini [41], in
his review, specifically addresses pattern and form.

Since the late 1990s there has been an ever increasing
number of truly interdisciplinary studies which cover a
remarkably wide spectrum of topics such as wound
healing and cancer to mention just two (see [35,36]
for a survey). Much of this involves modelling the
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phenomena across many different scales. One example
is the seminal work of Gatenby et al. [42]. The sugges-
tion here was that tumour cells create an environment
which allows certain mutations to be selected and
hence the evolution of mutant cell populations to
occur within the body; this is called somatic evolution.
The authors analysed somatic evolution in this context
and showed a number of evolutionary pathways in
ductal carcinoma in situ. Colleagues suggested that
different mutant clones would emerge in a well-defined
temporal sequence, while the mathematical simulations
showed that this was highly unlikely. The simulations
predicted that hypoxia (lack of oxygen) should
promote emergence of varying sized nodules of a
mutant clone of a certain type surrounded by other
cell types, and that over time these nodules would
grow and merge. This stimulated their colleagues to
carry out experiments which confirmed this prediction.
Another study highlights cellular adaptions of cancer
cells in colorectal cancer [43].

The basic concept, which Turing demonstrated
mathematically, was that if you have two chemicals,
in later studies (such as [13]) referred to as an activator
and an inhibitor, which react together and at the same
time diffuse, crucially at different rates with the inhibi-
tor having the larger diffusion coefficient, it is possible
for such a coupled system of reaction–diffusion equations
to produce steady-state spatial patterns in chemical
concentrations of the reactants. In the early to mid-
1970s Turing’s paper was rediscovered by more theore-
ticians with an increasing number of publications
starting to appear. Closely related, but not specifically
to Turing’s work, is the seminal experimental work on
the importance of chemical gradients in embryonic
development by Wolpert [44], who introduced the con-
cept of ‘positional information’, where cells in a
chemical gradient react to a chemical concentration
with which they are associated. His work initiated a
huge amount of experimental and theoretical work,
often controversial, that is still going on. For a review
of his work and his views on development, see Wolpert’s
[45] book on the principles of development.

To get an intuitive idea of how the reaction–diffusion
patterning works, consider the following, albeit unrea-
listic, scenario of a field of dry grass in which there is
a large number of grasshoppers which can generate a
lot of moisture by sweating if they get warm. Now sup-
pose the grass is set alight at several random points and
a flame front starts to propagate from each. We can
think of the grasshopper as an inhibitor and the fire
as an activator. If there were no moisture to quench
the flames the fires would simply spread over the
whole field, which would result in a uniform charred
area. Suppose, however, that when the grasshoppers
get warm enough they can generate enough moisture
to dampen the grass so that when the flames reach
such pre-moistened areas the grass will not burn. The
scenario for a heterogeneous spatial pattern of charred
and uncharred grass patches is then the following.
The fires start to spread; these represent one of the
‘reactants’, the activator, with a fire ‘diffusion’ coeffi-
cient, which quantifies how fast the fire spreads.
When the grasshoppers, the inhibitor ‘reactant’,
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ahead of the flame fronts feel it coming they move
quickly ahead of it; that is, they have a ‘diffusion’ coef-
ficient which is much larger than that of the fire fronts.
The grasshoppers then sweat profusely and generate
enough moisture to prevent the fires spreading into
the moistened area. By this way, the charred areas
are restricted to finite domains which depend on the
‘diffusion’ coefficients of the reactants—fire and grass-
hoppers—and the various ‘reaction’ parameters. If the
grasshoppers and flame fronts ‘diffused’ at the same
speed, no such spatial pattern could evolve.
4. HOW THE LEOPARD GETS ITS SPOTS

Murray [46] studied how animal coat patterns were
formed and used the practical Thomas [37] reaction–
diffusion mechanism to study them. Murray showed
that a single pre-patterning mechanism was capable of
generating the geometry of mammalian coat patterns,
from the mouse to the badger to the giraffe to the ele-
phant and almost everything in between, with the end
pattern governed simply by the size and shape of the
embryo at the time the pattern formation process was
initiated. In solving the reaction–diffusion system the
domain size and shape is crucial. For a given mechanism
if you try and simulate solutions in a very small domain
with zero flux boundary conditions it is not possible to
obtain steady-state spatial patterns. A minimum size is
needed to drive any sustainable spatial pattern. If, for
example, it is a long thin domain, you can only generate
stripes. You can think about it intuitively. Consider a
long thin tank into which you throw a stone at one
end: the only waves which persist are one dimensional
along the tank. If the tank is both long and wide, a
pond for example, and the surface is disturbed, it is
possible to have more complex two-dimensional surface
wave patterns.

In the calculations, a set of reaction and diffusion
parameters were chosen for the Thomas [37] system
which could produce a diffusion-driven instability and
keep them fixed for all the calculations. Only the scale
and geometry of the domain were varied. In the figures
below, the resulting patterns are coloured dark and
light in regions where the concentration of one of the
morphogens is greater than or less than the concen-
tration in the homogeneous steady state. Even with
such limitations on the parameters, the wealth of poss-
ible patterns is remarkable. For a given domain size and
geometry each set of initial conditions gave a similar
but, crucially, unique pattern.

Suppose the surface, which corresponds to the reac-
tion–diffusion domain, is a rectangle. As mentioned, if
the surface is verysmall, it cannot have anyspatial pattern:
a minimum size is therefore needed to exhibit spatial het-
erogeneity. As the size of the rectangle is increased, a
series of increasingly complex spatial patterns emerge.

The concept behind the model is that the simulated
spatial patterned solutions of a reaction–diffusion
mechanism reflect the final morphogen melanin land-
scape observed on animal coats [36,39,46–48]. With
this scenario the cells react to a given level in morpho-
gen concentration, thus producing melanin (or rather
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Figure 1. (a) Examples of a developmental constraint. Spotted
animals can have striped tails but not the other way round.
From left to right: the drawings are typical of the tail of the leo-
pard, the cheetah and the genet together with the solutions from
a reaction–diffusion system which can generate steady-state
spatial patterns. The geometry and scale when the pattern
mechanism is activated play crucial roles in the resulting coat
patterns. Dark regions represent areas of high morphogen con-
centration. (Tail art work reproduced with permission of
Patricia Wynne.) (b) A cheetah (Acinonyx jubatus) in the Seren-
geti: an example of the developmental constraint described in
(a). (Photograph courtesy of Professor Andrew Dobson.)

(a)

(b)

Figure 2. (a) These show the result of numerical simulations of
the reaction–diffusion model proposed for the generation of
coat markings on animals; it is the same mechanism used in
figure 1. The model parameters were also the same; only the
scale parameter was varied. The domain sizes have been
reduced to fit in a single figure but in the simulations there
was a scale difference of 1000 between the smallest and the lar-
gest figure. (b) An example of the first bifurcation: Valais
blackneck goat. (Photograph courtesy of B. S. Thurner Hof,
Wikimedia Commons.)
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becoming melanocytes—cells which produce melanin). In
figures 1a and 2a, the black regions represent high levels
of melanin concentration. It should be emphasized that
this model is a hypothetical onewhich has not been verified
experimentally but rather circumstantially. The main
purpose is to show how scale and shape play major roles
in animal coat patterns as they must in other developmen-
tal processes. Such an approach has also been used in
lepidopteran wing patterns [39,47,49]. Importantly, the
latter work presents experimental confirmation of their
theoretical predictions.

An example of how the geometry constrains the poss-
ible pattern modes is when the domain is so narrow that
only simple, essentially one-dimensional, modes can
exist. Two-dimensional patterns require the domain to
have enough breadth as well as length. Consider a
tapering cylinder. If the radius at one end is large
enough, two-dimensional patterns can exist on the sur-
face. So, such a tapering cylinder can exhibit a
gradation from a two-dimensional pattern to simple
stripes as in figure 1a.
Interface Focus (2012)
The solutions of the reaction–diffusion system
in domains shown in figure 1 were first computed.
These domains all taper as shown. This shows that
the conical domain mandates that it is not possible to
have a tail with spots at its tip and stripes at its base,
but only the converse: figure 1 shows some examples
of specific animal tails. This is a genuine example of a
developmental constraint. Cheetahs are prime examples
of this, as well as other spotted animals. Geoffrey’s
cat (Leopardus geoffroyi), named after Geoffroy
Saint-Hilaire who travelled extensively in the south
and east of South America, the habitat of this animal,
is a less well-known example of a spotted cat on
which both the tail and the legs exhibit the develop-
mental constraint. If the threshold level of morphogen
is slightly different then a qualitatively similar pattern
will develop. In this way quite different, but globally
similar, patterns can be formed and could be the expla-
nation for the different types of patterns on different
species of the same animal genre, such as the giraffe.

http://rsfs.royalsocietypublishing.org/
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Figure 3. Photographs of animals which exhibit subsequent
bifurcating patterns: (a) belted Galloway cows. (Photograph
courtesy of Allan Wright.) (b) Typical scapular striping on a
Grévy zebra (Equus grevyi). (Photograph courtesy of
Professor Daniel Rubinstein.)

(a)

(b)

Figure 4. Computed solutions of equation (5.2) in a three-
dimensional anatomically accurate brain. These show the
horizontal section of the virtual human brain through the site
of the original tumour (‘plus’ in (a), ‘asterisk’ in (b)). The left
image in each is the tumour at diagnosis while the right image
is the same tumour at the time of death. The thick black contour
defines the edge of the tumour that can be detected by enhanced
CT. The blue contours outside this black line represent lines of
constant cancer cell densities peripheral to the imaging limits.
(a) Tumour in grey matter: the time from diagnosis to death
is approximately 8 months. (b) Tumour in white matter: the
time from diagnosis to death is approximately 5 months.
(Figures adapted from [64].)
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The interpretation of figure 2 is that if the animal
skin size is too small when the patterning mechanism
is activated, as in the mouse, or too large, as in the hip-
popotamus and elephant, then no clear pattern will be
observed and these animals are essentially uniform in
colour. In between there is a progressively more complex
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pattern as the size increases: the first two bifurcations
are illustrated in figure 2 with the larger animals still
showing coat pattern but looking progressively uniform
in colour as shown in figure 2a.

Note the patterning where the rear leg joins the body
in figure 3b. This is typical of the model simulations
[36,39,48]. Since the final pattern is dependent on
when in development the patterning mechanism is acti-
vated and on the random initial conditions every
animal’s coat pattern is unique. The wider and fewer
stripes on the zebra Equus burchelli is a result of a differ-
ent timing for pattern initiation as discussed in detail by
Murray [36,39]. Although rare, aberrations, such as
striped black sheep, black zebras with white stripes
and so on, occur [36]: these are probably the result of a
genetic mutation. The possible survival of these two
specific zebra species is quite different and is discussed
in detail in an interesting article by Rubenstein [50].

There have been numerous developments and an
increased understanding of how coat patterns on ani-
mals, fish and butterflies, for example, are formed
with the addition and combination of other pattern-
forming mechanisms, such as chemotaxis whereby
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there is a movement of cells upward in the chemical gra-
dients. There are numerous review articles and books.
For example, Baker et al. [51] discuss somite formation,
Painter et al. [52] consider fish stripe formation through
chemotaxis, Camazine et al. [53], Maini [41,54], Suzuki
et al. [55] and Kondo et al. [56] discuss evolving fish
patterns and other patterned species.

In an interesting paper, Allen et al. [57] point out that
an understanding of the diversity of animal coat patterns
requires an understanding of both the mechanisms which
create them and their adaptive value. Among other
things they discuss the advantages of specific patterns
in different environments. They use a reaction–diffusion
model but their conclusions are general and do not rely
on specific reaction–diffusion models. They convincingly
show how different markings relate to specific natural
environments for the specific fields.
5. GLIOBLASTOMA BRAIN TUMOURS—
ENHANCING IMAGING AND
HIGHLIGHTING PROBLEMS OF
CURRENT TREATMENT

A practical application of mathematical modelling
that is proving to be of significant medical use is in
the growth and control of glioblastomas, the most
aggressive brain tumours, which are always fatal, irre-
spective of any of the current treatments. Tracqui
et al. [58] and Cruywagen et al. [59] were the first to pro-
pose a basic model, the analyses of which have
proved medically illuminating. Woodward et al. [60]
showed the behaviour of surgically treated high-grade
gliomas to a degree of accuracy which had not been
possible in vivo with statistically significant probability
even with groups of more than 50 real patients [61].
Burgess et al. [62] developed the three-dimensional
model which is the basis for subsequent three-dimen-
sional models currently used. This paper reconfirmed
the limitations of existing imaging techniques, the limit-
ations of which still exist. Burgess et al. [62] were also
the first to demonstrate that cancer cell diffusion,
mainly ignored up to that time, is a major compo-
nent of glioma growth. They showed that only those
tumours with a low diffusion rate could benefit from
wide surgical resection, although eventually there will
always be multi-focal recurrence as was made clear in
their study.

The practical basic mathematical model (a full
review is given by Murray [36]) encompasses the two
key elements in the growth of tumours, namely the
invasive diffusive properties of the cancer cells and
their growth rate. Qualitatively, the model is stated as

rate of change of tumour cell density ¼
diffusion ðinvasionÞ of tumour cells

þ net proliferation of tumour cells; ð5:1Þ

the mathematical form of which is

@c
@t
¼ r � DðxÞrcþrc; ð5:2Þ

where c (x, t) is the glioma cell density, measured in
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cells mm23, at position, x, in the brain at time, t,
measured in months, D(x) is the cell diffusion (inva-
sion), measured in mm2 per month, which quantifies
the invasiveness of the cancer cells at position x in
the brain and r is the net proliferation rate (per
month) of the cancer cells which gives the cell turnover
time as log 2/r (months).

Using the model, two individual patient brain scans
allow the key model parameters, namely the diffusion,
D, and the cell growth, r, to be calculated [63,64].
With these parameter values we can predict the
growth of such brain tumours and importantly estimate
key aspects of the tumour’s growth and response of indi-
vidual patients to different treatment protocols prior to
their use. Figure 4 is a computed solution of equation
(5.2) in an anatomically correct brain: it shows the
detectable tumour at death and the spread of the
tumour cells beyond what can be detected by the most
accurate current computed tomography (CT) or mag-
netic resonance imaging (MRI) techniques. Simulations
of the model thus greatly enhance current imaging tech-
niques to whatever level of cancer cell density is required.
The model analysis shows how fast the tumour grows
and, importantly, where in the brain [64,65].

When a glioma is detected it has been growing for
many months. From the scans of the anatomically cor-
rect patient brain the volume of an equivalent sphere of
radius r is calculated. For a large time, t, the solution
of (5.2) gives (see [35,36]) the approximate radius of
detectable tumour and the velocity of growth, v,
as approximately

r ¼ 2t
ffiffiffiffiffiffiffi
Dr

p
) v ¼ r

t
¼ 2

ffiffiffiffiffiffiffi
Dr

p
: ð5:3Þ

That is, the equivalent radial growth is linear in time, a
finding confirmed by Mandonnet et al. [66].

If we consider that detection is when the equivalent
spherical tumour volume is typically of radius 15 mm
and that death occurs when the radius is 30 mm
[64,65] the approximate survival time from detection,
in the absence of any treatments, is given, from (5.3), by

survival time ðmonthsÞ ¼ tsurvival ¼ tr¼30 � tr¼15

¼ 7:5ffiffiffiffiffiffiffi
Dr
p : ð5:4Þ

Typical growth rates vary quite widely, approxi-
mately from 1 to 5/month and diffusion rates from
1 to 8 mm2/month.

Survival time, however, depends on where the
tumour is mainly situated. If it is primarily in the
grey area of the thalamus, for example, the diffusion is
smaller and so the survival time is longer, as is clear
from the expression (5.4).

Mathematical analysis of the model equation shows
that the approximate equivalent diameter of the
tumour and the steepness of the cancer cell density at
its approximate edge, which determines the area of
surgical removal (resection), are given by

thickness ¼ 16

ffiffiffiffi
D
r

s
and steepness ¼ 1

8

ffiffiffiffi
r

D

r
: ð5:5Þ
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The smaller the diffusion coefficient the steeper the
edge of the tumour and the smaller the thickness,
which implies that more of tumour can be removed sur-
gically. Surgery, never successful, can be directly
incorporated into the model (5.2), as was originally
done by Woodward et al. [60]. By the same token, radi-
ation can also be included and more precise radiation is
also possible. Both of these result in a longer life expect-
ancy than for larger diffusion coefficients since it takes
longer for recurrence to occur from the remaining
cancer cells outside the resection volume. The analy-
sis of this basic model provides genuine medical
information that enhances the efficacy of current thera-
pies and, crucially, that enables them to be quantified
for individual patients prior to their use (e.g. [65]).
Among other things, figure 4 also clearly shows why
regrowth of the tumour is inevitably multifocal after
surgery.
6. CONCLUDING DISCUSSION

This has been a very short and personal choice from the
vast literature associated with the application of math-
ematical models in the biomedical sciences. In the 1980s
with most of the research conclusions being speculative
there was a decrease in the new applications of
reaction–diffusion models since demonstrating the
existence of specific morphogens was proving elusive.
This resulted in the new mechano-chemical theory of
biological pattern and form, mentioned above, which
was based on experimental data on real cells and the
forces they could exert in the generation of pattern
and form. From the mid-1990s on the practical use of
reaction–diffusion models has again increased as has
research and developments of the Oster–Murray
mechano-chemical theory of pattern formation as
more experimental data and confirmation of modelling
predictions have been found.

These mechano-chemical models assume that cells
move in response to external physical and chemical gui-
dance cues and form spatial patterns: see Murray
[36,39] for a full discussion. Oster and Murray’s
mechano-chemical approach directly brought forces
and known measurable properties of biological tissue
into the morphogenetic pattern-formation process.
The mechanisms start with known experimental facts
about embryonic cells and tissue involved in develop-
ment. They were used to construct model mechanisms
which reflect these physical facts. Basically, they took
the view that mechanical morphogenetic movements
themselves create the pattern and form. The models
quantify the coordinated movement and patterning of
populations of cells. The models are based on the exper-
imental observations that early embryonic dermal cells
are capable of independent movement and have the
ability to generate traction forces through long finger-
like protrusions called filopodia. These can attach to
adhesive sites on the tissue’s extracellular matrix
(ECM) and thus pull themselves along; at the same
time they deform the ECM. This cell traction is resisted
by the viscoelasticity of the ECM. The orchestration
of the various physical effects can generate spatial
Interface Focus (2012)
aggregation patterns in cell number density and the
models show how the parameters affect the size and
shape of the patterns and when they can form. Here,
pattern formation and morphogenesis occur simul-
taneously as a single process. Work on these models
has resulted in understanding and suggesting numerous
examples of developmental constraints and morphogen-
etic rules, which have been confirmed by the experiment
and have suggested new avenues of research: see, for
example, Alberch [67,68], Alberch & Gale [69] and
Shubin & Alberch [70].

Despite the major developments in the past 20 years,
although we now know a lot more about pattern devel-
opment, most mechanisms are still not fully understood.
We do not know, for example, the complete mechanisms
of how cartilage patterns in developing limbs are
formed, or the specialized structures in the skin such
as feathers, scales, glands and hairs, or the myriad of
widely observed patterns. Many of the rich spectrum
of spatial patterns observed in development evolve
from a homogeneous mass of cells which are orche-
strated by genes which initiate and control the
pattern-formation mechanisms: genes themselves are
not involved in the actual physical process of pattern
generation. The basic philosophy behind practical
modelling in biology is to try to incorporate the phy-
sico-chemical events, which from observation and
experiment appear to be going on during development,
within a model mechanistic framework which can then
be studied mathematically and, importantly, the results
related back to the biology. These morphogenetic
models provide the embryologist with possible scenarios
as to how, and when, the pattern is laid down, how
elements in the embryo might be created and what con-
straints on possible patterns are imposed by different
models. Many of the references in this article have
greatly increased our biological understanding.

Both the mechano-chemical models and reaction–dif-
fusion models have been fruitfully applied to a vast range
of biological problems in morphogenesis and elsewhere,
including feather primordia arrangement, wound healing,
wound scarring, cartilage formation, shell and mollusc
patterns and many others. It is almost certain that both
mechanisms are involved in development and although
they are in a sense competing theories we do not think
of them as such but rather mechanisms which comp-
lement each other. Perhaps the most fundamental
difference between the theories is that the elements
involved directly in the mechanical theory are all real bio-
logical quantities, namely cells, tissue and the forces
generated by the cells. All quantities involved are measur-
able. In the end, however, the key aspect of these
mechanisms is their ability to predict the subsequent
form and pattern, which can be verified experimentally.

The final arbiter of a model’s correctness and useful-
ness is not in what biological patterns it generates
(although a first necessary condition for any such model
is that it must be able to produce biologically observed
patterns), but in how consistent it appears in the light
of subsequent experiments and observations.

The explosion in biochemical techniques over the last
several decades has led to a still larger increase in our
biological knowledge, but has partially eclipsed the
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study of the intermediate mechanisms which translate
gene influence into chemicals, into gradients, and into
pattern and form. As a result, there is much still to be
done in this area, both experimentally and theoretically.

As seen in many of the papers referred to here,
models and their biological predictions encouragingly
have been a major stimulant for guiding critical exper-
iments which have resulted in significant discoveries.
This, of course, should be the aim of any mathematical
biology modelling, namely to stimulate in any way
whatsoever any endeavour which results in furthering
our understanding of biology.

We have clearly only scratched the surface of a huge,
important and ever expanding interdisciplinary world.
Biology, in its broadest sense, is clearly the science of
the foreseeable future. What is clear is that the appli-
cation of mathematical modelling in the biological,
medical, ecological and psychological sciences is going
to play an increasingly important role in future major
discoveries and control strategies. There is an ever
increasing number of areas where theoretical modelling
is important such as social behaviour, conservation in
animals when their environment is changed through
human land use, climate change and so on. In the
case of zebras, for example, Rubenstein [50] shows, by
unravelling how species adapt to specific environmental
changes, such as land use, why the Grévy zebra (Equus
grevyi: see figure 3b) is nearing extinction while
another (Equus burchelli) has adapted its behaviour
to survive. Behavioural ecology is another important
expanding area of research. How insect swarms, bird
flocks, schools of fish, animals and so on reach commu-
nity decisions is another exciting, relatively new, fast
growing area: see, for example, Simpson et al. [71],
Buhl et al. [72] and Nabet et al. [73].

Mathematical biology now has active researchers,
numbering in the thousands, in practically all of the
biomedical sciences. Mathematical modelling in
the social sciences is another growth area of the
future. One example of their involvement is the theor-
etical model developed for a major study on marital
interaction and divorce prediction. The basic model
and its practical application is based on a model
first proposed by Cook et al. [74], developed and used
in a major study of 700 newly married couples: see
Gottman et al. [75,76] and the book by Murray [35]
for a short survey. The prediction of the future of mar-
ital stability proved surprisingly accurate, with an
accuracy of 94 per cent. Its use in marital therapy is
proving highly successful.

Another positive development, although still very
much in its infancy and not generally accepted, is the
realization that in medical training, medical trials and
so on there is often a singular lack of true scientific pro-
cess: the current (2011) controversy over the use of
prostate specific antigen (PSA) tests and prostate
cancer is just one example. A major anomaly of PSA
tests has been explained by Swanson et al. [77].

A crucially important aspect of all this kind of math-
ematical or theoretical biological research is its genuine
interdisciplinary content. There is no way mathematical
modelling could solve major biological problems on its
own. On the other hand it is highly unlikely that even a
Interface Focus (2012)
reasonably complete understanding could come solely
from experiment.
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