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thaliana [12,13] offer an excellent example of this type of
approach, whereby differential equation models have
been able to offer predictions that have subsequently
been tested experimentally [14].

Mechanistic modelling is a first step towards charac-
terizing the aetiology of many different types of
diseases that are thought to be the result of disruptions
to the normal functioning of signalling pathways and
biochemical networks. Obtaining a detailed mechanistic
understanding of such enzymatic control processes could
have major implications in the study and potential treat-
ment of disease at a molecular level. The circadian clock,
for example, appears to play a central role in the physi-
ology of plants and mammals, controlling many
important cellular functions and influencing pathways
implicated with a variety of diseases [15]; indeed the
timing of drug administration relative to circadian
rhythms appears to strongly affect the efficacy of certain
anti-cancer agents [16]. Signalling pathways are also
strongly implicated in the origin of many cancers [17]
and understanding the intricate networks of nonlinear
interactions is key to being able to predict the impact of
biochemical changes within the system, whether natural
or artificially induced with the use of drugs [18].

Current investigations into biochemical networks are
characterized by complex nonlinear dynamics, as well
as by measurement and model uncertainty. When study-
ing the possible structure of such systems, working
hypotheses can be encoded as statistical models based
on systems of nonlinear differential equations that cap-
ture all assumptions regarding the likely mechanisms of
interaction. As models increase in size and complexity,
so does the need for sophisticated statistical methodology
that can consistently evaluate and update the evidence
in favour of each model, as new data become available
(e.g. [4,19]). Given the limited and variable experimental
data that are often available, a probabilistic approach
based on Bayesian statistics offers a natural way of
dealing with such parameter and model uncertainty.
Rather than finding an optimal working set of par-
ameters, as is the case in the frequentist setting [20],
the Bayesian paradigm advocates averaging over all
possible parameter sets with respect to their indivi-
dual probabilities. This marginalization procedure
automatically provides a compromise between fitting
the data and penalizing model complexity, such that we
may find the simplest model that is, however, still
complex enough to accurately describe the observed
dynamic behaviour.

Initial proof of concept investigations has shown
that a Bayesian approach to model ranking can be
very successful [4,11]; however, it is acknowledged
that performing Bayesian inference over ODE models
is extremely challenging [21]. The procedure is equival-
ent to evaluating integrals involving a highly nonlinear
function over a high-dimensional space. In more than
three or four dimensions deterministic approaches are
no longer feasible and we must resort to stochastic inte-
gration using simulation-based Monte Carlo techniques.
A common approach is to construct a Markov process
that converges to the target posterior distribution
[22]; however, this is not straightforward in practice
owing to the following three main issues.
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— Global convergence. Moving from a random starting
position in parameter space to the true stationary
distribution may be difficult, owing to the possibility
of multiple modes. We require sampling methods that
can explore all modes globally with the correct
frequency without becoming stuck in local maxima
of negligible probability mass.

— Local mixing. Once the Markov chain reaches a
region of high probability mass, we want it to
fully explore and ideally obtain near-uncorrelated
samples. This is challenging for many types of differ-
ential equation-based models, particularly those that
are high dimensional and whose nonlinear dynamics
induce very strong nonlinear correlation structures
in the posterior distribution.

— Computational cost. The likelihood of these models
can be expensive to evaluate, since it involves
approximately solving the system of ODEs with a
numerical integration scheme for each set of proposed
parameters. Although generally unavoidable, this
cost can be minimized through efficient exploration
of the parameter space, which can be measured in
terms of effective sample size (ESS), normalized by
the overall computational time [23].

The issue of identifiability is very important and has a
direct impact on our ability to perform efficient frequen-
tist or Bayesian statistical analysis. It has been noted
many times that ODE models of biochemical networks
generally exhibit widely varying parameter sensitivities
[24–28]; investigation of second-order sensitivities of
these models, evaluated at the maximum likelihood,
often reveals a wide eigenvalue spectrum that itself may
change depending on the point in parameter space at
which it is calculated. In settings with such varying par-
ameter scalings, standard Markov chain Monte Carlo
(MCMC) samplers generally have very poor mixing prop-
erties and produce highly correlated samples [23],
resulting in estimates of the required Bayesian quantities
with large Monte Carlo errors. This is often a result of
structural unidentifiability of the model [20], such that
parameters cannot be estimated with low variance. For
example, if the output of a model depends strongly only
on the ratio of two parameters u1/u2, then the conditional
distributions p(u1ju2) and p(u2ju1) may be well constrai-
ned, but their marginal distributions p(u1) and p(u2)
might not be.

Recently developed differential geometric MCMC
methods, on the other hand, seem particularly well
suited to this type of application, since they exploit the
natural representation of the model parameter space as
a Riemannian manifold [29], which is induced using the
expected Fisher information as a metric tensor [23].
The Fisher information, therefore, defines a local distance
measure and effectively allows the MCMC proposals to
be based on the curvature of the manifold, which is
directly defined by the parameter sensitivities of the
underlying model describing the dynamical system, see
§10 in Girolami & Calderhead [23].

We examine the application of manifold MCMC
methodology for performing Bayesian inference over
ODE models of biologically relevant size with complex
dynamics and partially unidentifiable structures. We
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perform posterior inference on biologically realistic
examples of enzymatic control processes that have
recently been studied in the systems biology literature.
We consider a model describing the main circadian clock
components in A. thaliana [12], building up inference
over different sets of model parameters to gain insight
into the challenges of a statistical analysis, and also a
model describing a cell signalling pathway [30]. We per-
form inference using datasets generated from each model
and infer the posterior distributions describing the
probable parameter values.
2. METHODS: MODELS AND INFERENCE

2.1. Differential equation models

We consider statistical models based on systems of ODEs
of the form ẋðtÞ ¼ fðxðtÞ; u;x0Þ, which defines a relation-
ship between the time derivatives of the states and, often
nonlinear, functions of the states x ¼ ðx1; . . . ; xN ÞT [ RN

þ
and parameters u ¼ ðu1; . . . ; uM ÞT [ RM

þ . In all but the
very simplest cases, such systems are analytically intract-
able and must be solved numerically given suitable initial
state conditions x0 at t ¼ 0. If we wish to employ sampling
methods based on differential geometric information, we
must be able to calculate the first, and in some methods
second-order sensitivities of the model outputs with
respect to the input parameters. One method of obtain-
ing these required sensitivities at all time points is to
approximate them using finite differences, however
this method may not be very accurate, particularly
for higher order sensitivities. A much more accurate
approach for ODE models is to calculate them via a
forward simulation of auxiliary equations obtained by
differentiating the original system with respect to
each parameter.1 The general form of the first-order
sensitivities therefore follows as

_S
i
t;n ;

d
dt
@xnðtÞ
@ui

¼ @fnðxðtÞ; u;x0Þ
@ui

¼
XN

l¼1

@ft;n
@xl

Si
t;l þ

dft;n
dui

;

ð2:1Þ

where we have taken the total derivative of f(x(t),u, x0)
with respect to each ui, since the states x also depend
implicitly on the parameter values. The sensitivity of xn

at time t with respect to a change in the parameter ui

is therefore given by St,n
i . This gives us a set of linear

differential equations to augment the original system.
ODE models for most biological systems can be con-

structed from a set of common components describing
various mechanisms of molecular interaction, such as
Michaelis–Menten type enzyme-mediated interactions
[6], and their proposed structure can be informed from
current knowledge of the underlying biology. The sys-
tems we consider illustrate the typical challenges
associated with performing statistical inference over
realistic biochemical models.
1For models with a large number of parameters and relatively few
states, adjoint differentiation may be used to calculate the
sensitivities much more efficiently [31].
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2.1.1. Circadian control model
Arabidopsis thaliana is widely accepted in plant biology
as a model plant worthy of close and careful study [32].
Although its genetic networks are much simpler than
higher organisms, it is still complex enough to offer
much insight into a large variety of biologically interest-
ing mechanisms of biochemical interaction, such as
negative feedback loops that induce nonlinear oscil-
latory behaviour. Overviews of the recent advances in
understanding this reasonably complex biological
system are given in McClung [33] and Hubbard et al.
[34].

We employ a model based on the core circadian net-
work in A. thaliana comprising transcription factors
LHY and CCA, and the pseudo-response regulator
TOC1. As a simplification, both LHY and CCA are
modelled as one component, since they have qualitat-
ively similar behaviour. Michaelis–Menten kinetics are
used to describe enzyme-driven protein degradation,
with Hill functions describing transcriptional activation
of mRNA for LHY/CCA and TOC1. The model is from
Locke et al. [12] and is the minimal description of the
network describing circadian behaviour of Arabidopsis,
which we simulate in constant darkness. It consists of
six nonlinear differential equations and a total of 24
parameters. The concentrations of the species are rep-
resented by [TOC1] and [LHY ] with subscripts m, c
and n denoting mRNA, protein within the cytoplasm
and protein within the nucleus, respectively. The Hill
coefficients a and b are set to 1 and 2 respectively,
based on evidence from the literature [12]. There are
therefore 22 free parameters to be inferred from the
experimental data, where (ni, gi) are transcription
rates, (mi, ki) are degradation rates, ( pi) is translation
rate and (ri) is rate-defining transport between the
nucleus and cytoplasm. The structure of this biochemi-
cal network is represented in figure 1 and the equations
are given in appendix A.1.
2.1.2. A cell signalling model
The modelling of cell surface receptors is an important
means of furthering our understanding of intra-cellular
signalling. Such mechanisms allow extra-cellular cues to
drive activation and dynamic behaviour within each cell
[35]. In particular, changes in the environment are often
encoded at a molecular level in terms of changes in the
concentration of ligands outside the cell; such ligands
may then bind to the surface of cells inducing internal
changes brought about by phosphorylation mechanisms.
A recent example of such a model is given in Becker
et al. [30], which describes the nonlinear dynamic behav-
iour of the erythropoietin (Epo) receptor in response to
changes in the ligand Epo concentrations outside the
cell. Encoded signals sent in this manner have significant
biological knock-on effects, invoking cellular responses
that activate a number of signalling networks further
downstream. The model we employ consists of
six nonlinear differential equations, based on mass-
action kinetics, with eight parameters, and details of the
equations and parameter values are given in appendix
A.2. We reparametrize the model such that we have par-
ameters measured in log10 space, allowing us to more
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Figure 1. This is a diagrammatic representation of the model
developed in Locke et al. [12], which we employ to model the
main circadian oscillator network in A. thaliana, consisting of
a negative feedback loop. TOC1 mRNA produces TOC1
protein in the cytoplasm, which is transported into the
nucleus and increases the production of LHY/CCA mRNA.
This in turn produces LHY/CCA protein in the cytoplasm,
which is transported into the nucleus and inhibits the pro-
duction of TOC1 mRNA. This negative feedback loop is
capable of producing oscillatory and highly nonlinear dynami-
cal behaviour, providing a challenge for any optimization or
MCMC algorithm. Solid line end with circles, production;
solid line end with triangles, transport; solid line end with
vertical line, inhibition.
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easily consider a wide range of possible parameter values
that vary by orders of magnitude. This model is compli-
cated further by the addition of an observation model,
since the biochemical species in this network are not all
observable individually; in particular, only the total con-
centration of [Epo] and [dEpo_e] is biologically
observable, along with [Epo_EpoR], such that our obser-
vations take the form y1 ¼ [Epo] þ [dEpo_e] and y2 ¼

[Epo_EpoR].
2.2. Parameter identifiability

A model parameter can be considered only weakly
identifiable if changes in its value have very little
effect on the output of the model. There are two main
causes of unidentifiability [20]; the first comes from
measurement uncertainty in the data, and the second
is a result of the model structure, in particular the
mathematical relationship between the parameters
and the states. Structural identifiability issues can
occur, for example, when the parameters of a statistical
model appear as a ratio; if the output of the model
depends only on this ratio, then the numerator and
denominator may effectively take on an infinite
number of values. This effect has been termed par-
ameter evaporation [27] since these unconstrained
parameters can tend to infinity. This poses a particular
Interface Focus (2011)
problem for methods that make use of second-order geo-
metric information, as the unconstrained parameters
can result in an ill-conditioned Hessian or Fisher infor-
mation matrix [36], and so the point-wise variance
estimates of such parameters can be very poor.

In the context of the circadian biochemical models
above, the commonly used Michaelis–Menten terms
are of particular interest [27]. This is a model to describe
an irreversible enzymatic reaction and relates the rate
of the reaction to the concentration of a substrate, [S].
Let us consider the Michaelis–Menten equation

r ¼ rmax ½S �
K þ ½S � ; ð2:2Þ

where r is the current reaction rate rmax is the maximum
reaction rate and K is the Michaelis–Menten rate,
which is inversely related to the enzyme’s affinity for
the substrate S. Firstly, let us note that

K � ½S �; r � rmax ; since
½S �

K þ ½S � � 1: ð2:3Þ

In this case, when the rate constant K is much less
than the concentration level of S, the overall reaction
rate is determined by rmax. K is, therefore, unidentifi-
able as it has almost no effect on the model output.
Similarly we see that

K � ½S �; r � rmax ½S �
K

; ð2:4Þ

and so it is the ratio of rmax toK that is important in deter-
mining model behaviour. In this case, both rmax and K
are potentially unidentifiable, depending on the values
of [S]. This unidentifiability results from our decision to
employ Michaelis–Menten kinetics to describe our
system; the fact that parameter values could blow up to
infinity or evaporate to zero may not have any bearing
on the biological reality, but are more likely to be artefacts
of our model approximation of the underlying system.
Within a Bayesian setting, the use of priors may be used
to enforce weak identifiability and improve numerical
conditioning [36].
2.3. The choice of priors

Priors are used in Bayesian statistics as a means of incor-
porating existing knowledge regarding likely parameter
values. In this setting, such knowledge commonly arises
from the consideration of the underlying biology and
experimental observations, however it may also arise by
considering the model itself. In previous work examining
oscillatory behaviour of biochemical networks [37], bifur-
cation analysis of a relatively simple delay differential
equation model was employed to find the regions of
parameter space that permitted oscillatory output, and
this information then informed the choice of priors.
This approach, however, is obviously dependent on the
model being amenable to such analysis; bifurcation
analysis on much larger, more complex models quickly
becomes unfeasible. The idea of informing the range of
admissible parameter values based on a mathematical
analysis of the model has also been suggested in Trans-
trum et al. [27], in particular for the case of examining
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Michaelis–Menten kinetics, where the aim was to avoid
numerical issues and parameter evaporation. Using
such an approach for the circadian rhythm models con-
sidered in this paper, we can enforce weak identifiability
without restricting the range of behaviour our model
can produce. In this case, we want K to be neither too
small nor too big, but rather roughly the same order of
magnitude as we would expect [S] to be.

In the clock model, we employ gamma priors, with
shape parameter k ¼ 1.5 and scale parameter u ¼ 2,
for the model parameters. These priors have positive
support, reflecting the fact that parameters correspond
to physical rate constants, and they discourage par-
ameter values approaching zero, since we assume that
all terms in each model play a role in the overall bio-
chemical process. Such priors are also suitable for
preventing the rate parameters getting too large, since
we assume that all chemical processes are slow enough
to be observed. The prior thus serves to constrain the
parameter values, and this has the added numerical
benefit of regularizing the Fisher information, when it
might otherwise be near singular with a very high con-
dition number [36]; the overall metric tensor is therefore
formed by taking the expectation of the posterior distri-
bution, as discussed in §4.2 in Girolami & Calderhead
[23]. We employ gamma priors, with shape parameter
k ¼ 1.5 and scale parameter u ¼ 10, for the initial con-
ditions of the clock model; these were chosen to allow
the initial values to be roughly the same order of mag-
nitude as the expected concentration levels of the
chemical species, as measured experimentally [12], and
they cover the support of the likely initial conditions
for each observed species.

In the signalling model, we employ Gaussian priors
with a mean of 22 and a standard deviation of 2;
since we reparametrize the model in log10 space, we no
longer require our prior to have only positive support,
and such priors cover parameter values of many
orders of magnitude.
2.4. Differential geometric Markov chain
Monte Carlo for ordinary differential
equation models

Sensitivities of parameters can change depending on the
dynamical behaviour of the model, and thus can vary
dramatically in different parts of parameter space.
This has implications for the successful application of
MCMC methods, since the transition kernel must there-
fore be tuned in different parts of the space, particularly
during the transient phase in which the chain may be
traversing large regions of space to reach the stationary
distribution (see figure 9). In this situation, standard
Metropolis–Hastings sampling methods can fail or per-
form poorly at best. Adaptive MCMC methods [38] also
address this issue by attempting to estimate the corre-
lation structure of the target distribution during
sampling; however, this is not an easy task particularly
as the dimensionality increases. In this section, we
introduce MCMC approaches that calculate this local
structure directly via the Fisher information.

Strong correlations and widely differing variances
make it challenging to propose large moves that will
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have a high probability of acceptance. In addition, the
expense of calculating the likelihood in this setting
underlines the importance of obtaining effective propo-
sal mechanisms. Some parameter values may be
perturbed by large amounts and yet still have very
little effect on the model output; in contrast, other par-
ameters may be extremely sensitive in terms of their
effect on model output and must therefore be perturbed
by very small amounts. To complicate matters, some-
times the model output may be sensitive to correlated
changes in subsets of parameters. However, recent
advances in MCMC methodology provide a systematic
means of overcoming these difficulties by the design
of proposal mechanisms that make use of the local
sensitivity information of the system [23].

A statistical model can be thought of as a family of
parametrized probability distributions, as defined
through the likelihood function, which gives the prob-
ability of a particular dataset given a set of parameter
values. Work in the 1940s by Jeffreys [39] and
Rao [40] sought to define distance between probability
distributions. The elegant solution recast probability
theory in the language of differential geometry—in par-
ticular they found that a natural measure of distance
may be defined between probability distributions
using the expected Fisher information as a local
metric, and the task is equivalent to calculating short-
est paths over a Riemannian manifold [29], where the
expected second-order sensitivities at a set of parameter
values define a local distance measure. We can consider
two sets of perturbed parameter values to be similar if
they result in similar posterior probabilities.

We begin with an analogy. Let us consider measur-
ing distance on a map of a mountainous region. On
the flat two-dimensional map, one can define a distance
purely in terms of its Euclidean coordinate system; in
real life, however, the actual measure of distance must
also take into account changes in the height of the ter-
rain. The greater the variability in the height of the
terrain, the less accurate the two-dimensional approxi-
mation. Similarly, in our statistical model, any
measure of distance based purely on the parameter
values is likely to be very misleading; a much more
accurate measure takes into account rates of change in
the probability of the statistical model, and it is exactly
this information that is given in a local sensitivity
analysis via the expected Fisher information.

From this geometrical point of view, we see why
standard MCMC approaches may fare badly, since
they generally employ a Euclidean measure of distance
when proposing moves in parameter space. Yet, a
small change in each parameter value may in actual
fact have widely varying effects on the output, and
hence probability, of the statistical model. The Fisher
information provides a local measure of the expected
second-order sensitivities of a system evaluated at a
particular set of parameter values. An eigenvalue
decomposition of the Fisher information can elucidate
the parameter dependencies within the model; most
biochemical networks have a relatively small number
of parameter combinations that strongly affect the
model output, with the remaining combinations
having little effect [20,24,25,41].
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The differential geometric MCMC methods devel-
oped in Girolami & Calderhead [23] effectively make
use of local sensitivity information to propose superior
moves in parameter space. In this work, we embed
these sampling schemes within a population MCMC
framework to help escape local maxima and fully
explore the parameter space [21,42,43].

We assume normally distributed additive errors in
the experimental data, in which case the expected
Fisher information takes the form of the weighted
inner product of the sensitivities at each observed time-
point such that GðuÞij ¼

PN
n¼1 SiT

�;nS
�1
n Sj

�;n, where
G(u)ij denotes the (i,j)th entry in the Fisher infor-
mation matrix obtained at the parameter values u.
The vector S�,n

j has elements that correspond to the sen-
sitivity of the nth species with respect to the jth
parameter at each of the sampled time points. The
error covariance for the nth species at all sampled
time points is denoted as Sn. The metric tensor of the
Riemannian manifold induced by the statistical model
is then G(u) þ F(u), where F(u) is the negative Hessian
of the log-prior [23], and we employ this in the sampling
schemes throughout this paper.

Geodesics are the equivalent of straight lines on a
Riemannian manifold, and are formally paths along
which the tangent vector is constant. In the case of the
Riemannian connection used in the following MCMC
algorithms, they also locally define the shortest path
between two points on the manifold, allowing them to gen-
erate samples very efficiently [23]. The manifold MCMC
methods we employ are generalizations of the Langevin
and Hamiltonian Monte Carlo methods [44,45]. The first
method, the manifold Metropolis-adjusted Langevin
algorithm (mMALA) makes proposals by simulating a
diffusion process across the manifold. The proposal is a
Gaussian distribution, whose mean is given by following
the curvature of the space along the direction of steepest
natural gradient, and whose covariance is given by a
scaled inverse Fisher information matrix. A simplified ver-
sion of mMALA may also be used by assuming a locally
constant metric at each point when making propo-
sals, whose mean then involves a cheaper to compute
approximation of the path defined in mMALA. The
second method, Riemannian manifold Hamiltonian
Monte Carlo (RMHMC) proposes moves by randomly
following a geodesic from the current point on the mani-
fold. This is more expensive to compute, as the geodesic
paths must be obtained by symplectically integrating
a non-separable Hamiltonian system. The reader is
directed to Girolami & Calderhead [23] for a full expo-
sition, and accompanying Matlab code, of the sampling
methods employed.
2.5. Implementation

One practical challenge of using the Fisher information
matrix is that it can become ill-conditioned for par-
ameters that are highly insensitive [36]. The use of a
prior helps mediate this problem somewhat and does
make the overall metric tensor G(u) þ F(u) better con-
ditioned, however we will see that this ill-conditioning
still negatively impacts on sampling efficiency. The par-
ameters in these models of biochemical networks can be
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naturally partitioned according to their functional role,
and in the case of the Michaelis–Menten parameters, it
is possible to predict where the issue of unidentifiability
may arise. We can use these natural parameter groupings
to design a blocked MCMC algorithm [46], such that each
set of parameters is sampled separately using a manifold
MCMC method conditioned on all other parameters; we
iterate through exploring the submanifolds induced by
our chosen groups of parameters. This blocking strategy
is designed to capture a large part of the correlation
structure in the system, while improving the numerical
stability by using smaller Fisher information matrices.
We shall examine the effect of this strategy in §4.

Synthetic datasets are very useful for evaluating the
performance of new methodology, and with complex
ODE models, it is convenient to have a set of parameter
values that generate the data as a benchmark. We inves-
tigate the models using a variety of noise levels, which we
detail along with the results in §3; ultimately we wish
to test our methodology using data with biologically
realistic numbers of observations and levels of noise.

For the circadian model, we generate data by sampling
10 data points for each species evenly over a time period of
48 h, using parameter values given in the literature [12].
Using a Gaussian error model, we add zero mean noise
to the data points generated for species LHY[m,c,n] and
TOC1[m,c,n], with standard deviation proportional to
the amplitude of the concentration of each species. The
circadian model we investigate has the difficulty that
the Fisher information over all parameters is numerically
ill-conditioned, as often happens when parameters are
weakly identifiable [36]. We therefore employ blocking
strategies that are informed by analytical consideration
of the model and partition the parameters into sub-
groups, each containing potentially strong correlation
structure. Instead of using one large ill-conditioned
Fisher information matrix to inform our sampling propo-
sals, we employ multiple smaller, but better-conditioned,
Fisher information matrices.

We embed the sampler within a population frame-
work to help escape local maxima and fully explore the
parameter space, noting that the samples obtained
could be further used for calculating Bayes factors via
thermodynamics integration [21,42,43]. Within this
framework, we explore multiple tempered distributions
simultaneously, each defined by a power posterior [43].
These form a smooth family of distributions between
the prior and posterior, and exchange moves between
these distributions allow faster convergence to the
global mode of interest. We employ the same temperature
schedule as detailed in Calderhead & Girolami [21].

A burn-in phase of between 10 000 and 20 000 samples
was found to be sufficiently long for the Markov chains to
converge to the stationary distributions defined by each of
the power posteriors used. During this time, the step sizes
of the parameters were adjusted every 100 iterations to
achieve an acceptance ratio of between 20 and 50 per
cent for standard Metropolis and between 30 and 70 per
cent for manifold sampling using simplified mMALA.
After the burn-in period, step sizes were fixed to ensure
samples were drawn from the stationary distribution.

The cell signalling model is made identifiable by fixing
two parameters, the values of which may be obtained
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Figure 2. We compare samples of the linear parameters in the circadian model, which are obtained using a variety of MCMC
sampling algorithms; Metropolis–Hastings, simplified mMALA, mMALA and RMHMC. The true parameter values are rep-
resented by the grey line. The woeful performance of the Metropolis–Hastings sampler is apparent from the slowly moving,
highly correlated samples it produces. By contrast, the samplers that make proposals using local geometric information, as
defined by the sensitivities of the ODE system, do far better. RMHMC produces nearly uncorrelated samples; however, this is
at great computational expense since the second-order sensitivities must be calculated multiple times over the geodesic proposal
path. Similarly mMALA requires the second-order sensitivities to be computed. Simplified mMALA offers performance
approaching that of mMALA, at a much reduced computational cost requiring only the first-order sensitivities to be calculated.
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experimentally [30] (see appendix A.2). The initial con-
dition of EpoR may also be found in the experiment of
Becker et al. [30]. The initial condition of Epo is assumed
to be known, and the other four initial conditions are set
to zero. The initial conditions of the observed species
Epo þ dEpo_e and Epo_EpoR are, therefore, completely
defined. The Fisher information for the remaining six par-
ameters is well conditioned and we may therefore infer
these together, without using a blocking approach. For
this model, a burn-in phase of 5000 samples was found
to be sufficiently long for the Markov chains to converge.

We obtained the auxiliary sensitivity equations for
our ODE models using the Symbolic Math Toolbox
in Matlab. This automated process is extremely fast
and helps prevent human mathematical errors. We
solve them by making use of the SBToolbox2 [47]
for Matlab, which provides an interface to a C imple-
mentation of the Sundials solver [31] and is up to two
orders of magnitude faster than using the built-in
solvers in Matlab.
2This performance could be substantially improved by using adjoint
differentiation methods and programming using a compiled
language, rather than the interpreted language Matlab that we
use here.
3. RESULTS

3.1. Circadian model

We first consider three subsets of the parameters individu-
ally; the linear parameters (p1:2, r1:4), the transcription
parameters (n1:2, g1:2) and the Michaelis–Menten par-
ameters (m1:6, k1:6). This allows us to see the potential
challenges of inferring parameters in these three different
types of functions. We perform inference over each set
of parameters with the other sets of parameters fixed at
their true values.

3.1.1. Linear parameters
For now, we run a single chain initialized on the true
parameter values for the purpose of evaluating the
Interface Focus (2011)
sampling properties at the mode, and we fix the initial
conditions.

We first compare posterior sampling of the linear par-
ameters using Metropolis, simplified mMALA, MALA
and RMHMC, and a comparison of the sample traces
is given in figure 2. We employ a component-wise Metro-
polis sampler, whereby each parameter is updated
sequentially conditioned on all other parameters using a
Gaussian proposal, and we note that the component-wise
Metropolis–Hastings sampler, therefore, requires the
ODE model to be solved once for each parameter. The pro-
posal variances are automatically tuned to achieve
acceptance rates of between 20 and 50 per cent, and then
fixed before drawing posterior samples. This standard
sampler performs very poorly and is unable to sample effi-
ciently from the strongly correlated posterior distribution.
The manifold methods, however, perform far better,
making use of the local geometry information to propose
better moves through parameter space. RMHMC makes
proposals that follow geodesic paths across the manifold;
however, in our implementation, it is computationally
much more expensive,2 requiring an average of five
evaluations of the second-order sensitivity equations
and an average of 25 evaluations of the first-order sen-
sitivity equations. mMALA makes moves based on a
diffusion process across the manifold, and also performs
much better than Metropolis–Hastings, although again
this is computationally expensive because of the need to
calculate second-order sensitivities of the differential
equation model; it requires two evaluations of the
second-order sensitivity equations per iteration. Simpli-
fied mMALA makes valid MCMC proposals based on
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Figure 3. Scatter plots and pairwise density estimates of the posterior samples demonstrate the strong correlation structure
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an approximate diffusion across the manifold. It gives
similar results to mMALA and is computationally
much more efficient as it only requires two evaluations
of the first-order sensitivities per iteration. In practice,
we find that solving the extended first-order ODE
system twice for simplified mMALA is only three to
four times slower than solving the original system for
each parameter in a component-wise Metropolis-
Hastings sampler, yet it produces samples that are
visibly far better (figure 2). We refer the interested
reader to Girolami & Calderhead [23] for a more detailed
comparison of the time-normalized efficiency of mani-
fold sampling methods, noting that the extended
first-order system consists only of additional linear
equations that may be solved very efficiently [31]. We
therefore employ simplified mMALA as our sampler of
choice for all subsequent experiments in this paper.

Figure 3 shows scatter plots of the samples obtained
from simplified mMALA for each parameter combination.
Even with these linear parameters, there are some very
strong correlations and severe scaling differences, illustrat-
ing the difficultyof sampling fromstatisticalmodels of this
type. As an example, let us consider parameters r1 and r2,
which define transport between the nucleus and cyto-
plasm for LHY/CCA. There is a very strong correlation
structure between these parameters; as the concentration
of the protein in the nucleus increases, the concentration of
protein in the cytoplasm decreases and vice versa. There is
a similar strong correlation structure between parameters
r3 and r4 describing nuclear/cytoplasmic transport for
TOC1. Although the other parameters do not exhibit
such strong dependencies, their differing scales are
evident, which further compounds the difficulties.
Interface Focus (2011)
We also compared the effect that changing the noise
level has on parameter inference, and in particular on
the practical identifiability of the model. Even with
very low levels of noise, we observed wide variability in
the parameter estimates; however, the model was still
able to make predictions with high certainty, as has
been observed in biological models examined in previous
work [27]; dealing with large uncertainty in parameter
values is an unavoidable part of the modelling process.
For many models, the experimental accuracy required
to obtain tight bounds on individual parameters is
simply unachievable, and indeed often undesirable if we
are mainly interested in the model predictions. The care-
ful use of priors can therefore help to constrain parameter
values to biologically meaningful ranges.
3.1.2. Transcription parameters
We now consider inference over the four transcription
parameters with Hill coefficients, and fix all other par-
ameters at their true values. Again, there are strong
correlations between these parameters, particularly
between parameters appearing together within the
same algebraic term. This correlation structure is
shown in figure 4 and was seen to remain even with
increasing levels of error variance in the data.
3.1.3. Michaelis–Menten parameters
Fixing all parameters apart from those appearing in the
Michaelis–Menten terms, we investigate the effect of a
blocking strategy on sampling. Informed by the analysis
of the Michaelis–Menten terms in §2.2, we may group
the 12 parameters into pairs; each pair appears together
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in a Michaelis–Menten term and in certain cases the
system may respond to changes in the ratios of these
pairs. Figure 5 shows the traces of Michaelis–Menten
parameter samples obtained with and without the use
of blocking. Without blocking, the Fisher information
becomes badly conditioned (condition number greater
than 108) and the resulting numerical inaccuracy results
in very small step sizes and highly correlated samples
being drawn. The use of blocking parameters is seen
to mitigate this problem.

Scatter plots of the parameter pairs (mi, ki) are also
shown in figure 6. Interestingly, we see that the pair of
Michaelis–Menten parameters with the strongest corre-
lation (m1, k1) is indeed for a species with low
concentration, such that k1� [LHY]m. We see that
this type of severe correlation structure was premedi-
tated in §1, where we considered the case of the ratio
of m1 to k1 driving the dynamics. Clearly, when
Interface Focus (2011)
performing inference using MCMC, we wish to make
moves in parameter space that take into account these
strong correlations. There was seen to be less correlation
between (mi, ki) and (mj, kj), when i =j, which we
might also expect from the structure of the equations
since each Michaelis–Menten term contains only the
chemical species of the equation in which it appear.

3.1.4. Inference with full and partial observations
Until now we have employed a single chain initialized at
the correct parameter values to examine the local
mixing properties of manifold MCMC methodology. We
now consider the effect of using random starting values
for our parameters. Performing inference on just the
linear parameters, keeping all others fixed, we find that
there appears to be a single mode, which our Markov
chain can reach regardless of the starting parameters.
However, if we infer both the linear parameters and the
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transcription parameters, there is another mode to which
our Markov chain may converge. This alternative set of
parameters gives a non-oscillatory output that roughly
corresponds to the average of the true model output, as
shown in figure 7. Systems with complex nonlinear
dynamics are particularly susceptible to this problem,
Interface Focus (2011)
since local maxima may occur when the model moves
in and out of phase with different parts of the data.
Any MCMC methodology used for this problem must
therefore not only have good local mixing properties,
but it must also be capable of making more global steps,
allowing it to escape from local modes of negligible
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probability mass. Using simplified mMALA to explore a
population of tempered distributions [21] allows us to
resolve this issue.

We infer all sets of model parameters together using
a blocking strategy and population scheme with 20
tempered distributions, as in Calderhead & Girolami
[21]. Figure 8 shows the differences in the predictive
model outputs for differing numbers of observed
species. This is important as it is usually not possible
to obtain measurements for all components in a biologi-
cal system, owing to either financial or technical
constraints.
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Figure 9. The path taken during the burn-in phase of a
Markov chain moving through three of the six dimensions of
parameter space of the cell signalling example (§8) is shown,
with the colour representing the posterior probability of the
current set of parameters; the chain starts with very low prob-
ability (blue) moves to higher probability region (red) and
finally finds the posterior mode (brown). All proposal steps
were made using local sensitivity information via simplified
mMALA sampling. Interestingly, the sensitivities of the par-
ameters change dramatically as the chain moves through the
parameter space. At the beginning of the path (shown by
the blue points), the chain moves in all three of these par-
ameter directions, until it reaches a plateau along which two
of the parameters become tightly constrained. At the end of
the plateau, the sensitivities of two of the parameters switch
with the chain now moving upwards, with little movement
along the previously preferred axis.
3.2. Cell signalling model

We infer parameters over the cell signalling model
described in §2.1.2. in which the observations are a
linear combination of the underlying modelled species,
demonstrating that manifold sampling methodology
extends straightforwardly to incorporate observation
models. It also demonstrates how this methodology
may be used to infer parameters of models based on
commonly used mass action kinetics. The model is para-
metrized in log10 space allowing exploration over several
orders of magnitude. Despite having only six par-
ameters, this cell signalling model still exhibits
reasonably complex dynamics and sensitivities that
change markedly throughout the parameter space.
This is shown in figure 9, where we observe the path
taken by a Markov chain during the burn-in period
Interface Focus (2011)










